VisionSOM-8Mmini EM Radiation Test rev. 1.1

VisionSOM-8Mmini EM Radiation Test

Revision 1.1, 1/2022

© 2021 SoMLabs Sp. z o. o.

All Rights Reserved. No warranty of accuracy is given concerning the contents of the information contained in this publication. To the extent permitted by law no liability (including liability to any person by reason of negligence) will be accepted by SoMLabs Sp. z o. o., its subsidiaries or employees for any direct or indirect loss or damage caused by omissions from or inaccuracies in this document.

SoMLabs Sp. z o. o. reserves the right to change details in this publication without notice.

Rev. 1.1 1/2022

Document Revision History

Revision Date		Notes
1.0	26.11.2021	Initial
1.1. 26.01.2022		Minor editorial improvements

Table of Contents

Docu	men	nt Revision History	1
Table	e of (Contents	2
1.	Intro	oduction	3
2.	Test	ed hardware	4
3.	Test	equipment	5
3.1	L.	Standard measurements devices	5
3.2	2.	Dedicated measurement items	5
4.	Mea	asurement setup	7
5.	Test	procedure	8
6.	Resu	ults	
6.1	L.	Results for 30MHz-1GHz frequency range (quasi-peak)	
6.2	2.	Results for 1-3GHz frequency range (average)	11
6.3	3.	Results for 1-3GHz frequency range (peak)	12
6.4	1.	Reference charts	13
7.	Sum	ımary	14
8.	Limi	itation on Liability	14

1. Introduction

This document presents the VisionSOM-8Mmini family modules EM emission/radiation tests, held at the precompliance SoMLabs EMC test lab.

Performed tests checked compatibility of EUT with emission requirements defined in standard EN 55032 class B (CISPR 32) in simulated open space environment (OATS) with 3 meters antenna distance.

Full test consists of three emission measurements in X, Y and Z axes and recalculation of the results of the obtained measurements according to the formula included in EN 55032 (CISPR 32) standard.

2. Tested hardware

Test covered VisionSOM-8Mmini in two hardware configurations (as on pictures below):

SLS23MMQC_1x00C_0yGR_zzGE_qqq_r

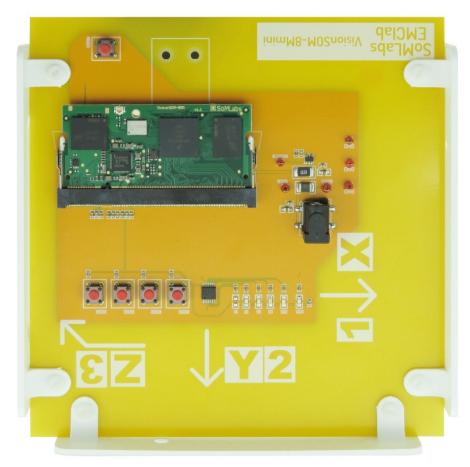
SLS23MMQC_1x00C_512R_zzGE_qqq_r

Where: x - means 6 or 8 y - means 1, 2 or 4 zz - means 08, 16 or 32 qqq - means 0SF or 1WB (if qqq=1WB, SoM is tested with RF module switched off) r - means I or C

For testing purposes was prepared dedicated Linux system image with simple application using UART transmitters (*imx-image-multimedia-visionsom-8mm-cb* for eMMC memory and the same configuration and functionality, but optimized for MicroSD memory).

3. Test equipment

Test item	Radiated emission below 1GHz and 1-3GHz range						
Instrument	Manufacturer	Model	Serial No.	Calibration date			
Spectrum analyzer	Rohde & Schwarz	FPL1003	102103	12.2020			
		B22, K54					
GTEM chamber	Astat	GTEM250	1000007	3.2021			
Coaxial cable	Bruel & Kjaer	AO-0015	23621	5.2021			
Analog power supply	Korad	KA3005D	-	-			


3.1. Standard measurements devices

3.2. Dedicated measurement items

For the correct performance of measurements, it was necessary to develop two dedicated elements:

- carrier board for SoM module with basic peripherals and power supply monitor,
- mechanical stand ensuring correct module positioning inside of GTEM chamber.

Dedicated carrier board (internally called YELLOW) with mounted SoM is shown on picture below.

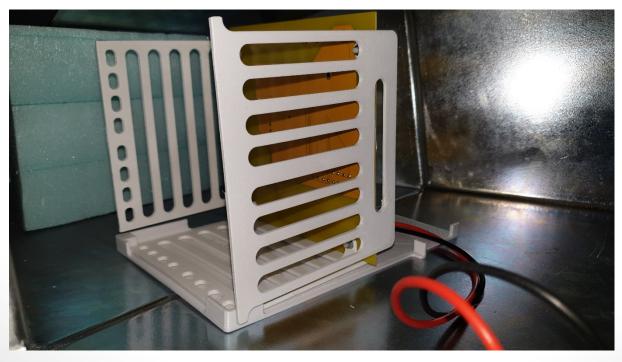
SoMLabs

Because of testing method base on three emission measurements in X, Y and Z axes and recalculation of the results of the obtained measurements according to the formula included in EN 55032 (CISPR 32) standard, dedicated stand was developed and produced using 3D printer as on picture below. Reference mechanical base is permanently glued inside of GTEM250 chamber.

SoMLabs

4. Measurement setup

The general view of the measuring station with the instruments used for measurements is presented below.



5. Test procedure

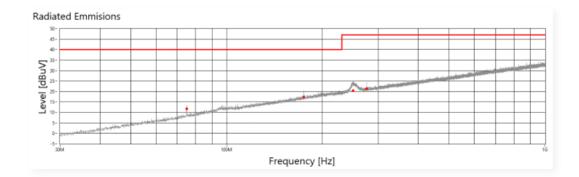
- 1. Spectrum analyzer was warmed up for 30 minutes since power supply on.
- 2. Power supply (+5V/250mA) was connected to GTEM filter.
- 3. The EUT was installed on YELLOW testing carrier board
- 4. The ASTAT GTEM program was started and configured.
- 5. Power cables were attached to the connectors: mounted on carrier board and internal in GTEM (filtered).
- 6. The EUT installed on YELLOW carrier board was mounted on a dedicated stand inside of GTEM in position 1 (X) as on picture below.



- 7. First measurement was started from ASTAT GTEM menu (for X axis).
- 8. After completing the first measurement, position of EUT with YELLOW carrier board was changed to position 2 (Y) as on picture below.

SoMLabs

- 9. Second measurement was started from ASTAT GTEM menu (for Y axis).
- 10. After completing the second measurement, position of EUT with YELLOW carrier board was changed to position 3 (Z) as on picture below.

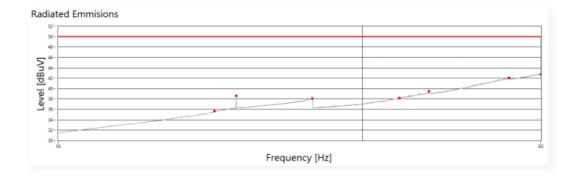

- 11. Third measurement was started from ASTAT GTEM menu (for Z axis).
- 12. After completing the third measurement, ASTAT software calculates correlated results.

6. Results

6.1. Results for 30MHz-1GHz frequency range (quasi-peak)

SoMLabs

8Mmini-full-UART-QP					
Operator	Piotr Zbysiński				
EUT	VisionSOM-8Mmini				
Uwagi	Firmware: imx-image-multimedia-visionsom-8mm-cb				
Nazwa Firmy	SoMLabs				
Limit	55032 30M-1G klasa B 3m QP				
Symulowany dystans	3m				

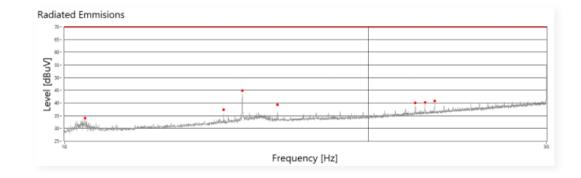

Final Scan Correlated Data

LP	Frequency[Hz]	Level[dBuV/m]	Limit[dBuV/m]	Difference[dBm]	Detector	RBW[Hz]	Pass/Failed
1	75,00M	11,66	40,00	28,34	QP	120k	pass
2	174,96M	17,40	40,00	22,60	QP	120k	pass
3	249,36M	20,37	47,00	26,63	QP	120k	pass
4	275,04M	21,22	47,00	25,78	QP	120k	pass

6.2. Results for 1-3GHz frequency range (average)

SoMLabs

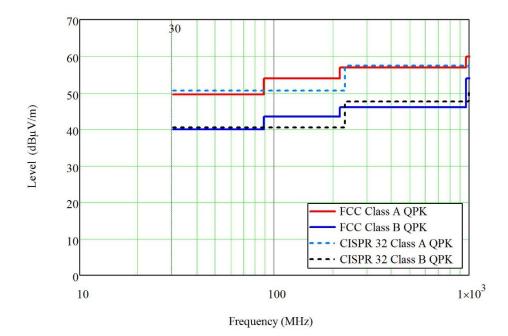
8Mmini-full-UART-AVG				
Operator Piotr Zbysiński EUT VisionSOM-8Mmini				
				Uwagi
Nazwa Firmy	SoMLabs			
Limit	55032 1G-3G klasa B 3m AV			
Symulowany dystans	3m			

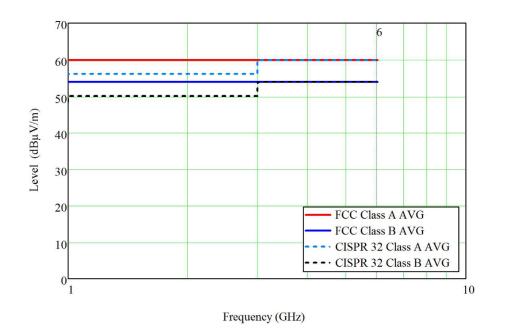

Final Scan Correlated Data

LP	Frequency[Hz]	Level[dBuV/m]	Limit[dBuV/m]	Difference[dBm]	Detector	RBW[Hz]	Pass/Failed
1	1,43G	35,66	50,00	14,34	AVG	1M	pass
2	1,50G	38,60	50,00	11,40	AVG	1M	pass
3	1,78G	38,07	50,00	11,93	AVG	1M	pass
4	2,18G	38,19	50,00	11,81	AVG	1M	pass
5	2,33G	39,50	50,00	10,50	AVG	1M	pass
6	2,79G	42,07	50,00	7,93	AVG	1M	pass
7	3,00G	42,72	50,00	7,28	AVG	1M	pass

6.3. Results for 1-3GHz frequency range (peak)

SoMLabs




Final Scan Correlated Data

LP	Frequency[Hz]	Level[dBuV/m]	Limit[dBuV/m]	Difference[dBm]	Detector	RBW[Hz]	Pass/Failed
1	1,05G	34,04	70,00	35,96	PK	1M	pass
2	1,44G	37,34	70,00	32,66	PK	1M	pass
3	1,50G	44,90	70,00	25,10	PK	1M	pass
4	1,63G	39,32	70,00	30,68	PK	1M	pass
5	2,23G	40,06	70,00	29,94	PK	1M	pass
6	2,28G	40,14	70,00	29,86	PK	1M	pass
7	2,33G	40,75	70,00	29,25	PK	1M	pass

6.4. Reference charts

CISPR 32/FCC radiated limits for Class A and Class B in frequency range up to 1 GHz

CISPR 32/FCC radiated limits for Class A and Class B in frequency range above 1 GHz

7. Summary

The conducted and documented measurements confirm that the tested modules fully meet the requirements of EN 55032 class B (CISPR 32) emission standard.

8. Limitation on Liability

Under no circumstances shall SoMLabs Sp. z o. o. be liable for any loss, damage or expense suffered or incurred with respect to any defective product.

In no event shall SoMLabs Sp. z o. o. be liable for any incidental or consequential damages that you may suffer directly or indirectly from use of any product.